Hodge theory for twisted differentials

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension of twisted Hodge metrics for Kähler morphisms

The subject in this paper is the positivity of direct image sheaves of adjoint bundles Rf∗(KX/Y ⊗ E), for a Kähler morphism f : X −→ Y endowed with a Nakano semipositive holomorphic vector bundle (E, h) onX. In our previous paper [MT2], generalizing a result [B] in case q = 0, we obtained the Nakano semi-positivity of Rf∗(KX/Y ⊗ E) with respect to a canonically attached metric, the so-called Ho...

متن کامل

Hodge Theory for Combinatorial Geometries

The matroid is called loopless if the empty subset of E is closed, and is called a combinatorial geometry if in addition all single element subsets of E are closed. A closed subset of E is called a flat of M, and every subset of E has a well-defined rank and corank in the poset of all flats of M. The notion of matroid played a fundamental role in graph theory, coding theory, combinatorial optim...

متن کامل

Hodge Theory for R- Manifolds

Let X be an R-fold, and let π : E −→ X be a real vector bundle, of rank r, equipped with a positive definite symmetric bilinear form. If e1, . . . , er ∈ π −1(X) are orthonormal, then e1 ∧ · · · ∧ er is a non-trivial vector in ∧r E. Proposition: If f1, . . . , fr is any other orthonormal basis for π −1(X), then e1 ∧ · · · ∧ er = ±f1 ∧ · · · ∧ fr. Proof. Note that fi = g · ei for g ∈ O(r), so de...

متن کامل

TWISTED K - HOMOLOGY THEORY , TWISTED Ext - THEORY

These are notes on twisted K-homology theory and twisted Ext-theory from the C *-algebra viewpoint, part of a series of talks on " C *-algebras, noncommutative geometry and K-theory " , primarily for physicists.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complex Manifolds

سال: 2014

ISSN: 2300-7443

DOI: 10.2478/coma-2014-0005